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Abstract—  This paper describes how damage propagation 
can be tracked and modeled for a range of fault modes in 
some modules of commercial high bypass aircraft engines. 
To that end, response surfaces of all sensors are generated 
via a thermo-dynamical simulation model for the engine 
(cycle deck) as a function of variations of flow and 
efficiency of the modules of interest. These surfaces are 
normalized and superimposed. Next, sensor readings are 
matched to those surfaces and – using an optimization 
approach – the corresponding flow and efficiency pair is 
found that best explains the sensor data. This flow and 
efficiency pair is then compared to previous pairs and the 
direction of the change as well as the rate of change is 
determined. The whole trajectory is then projected into the 
time domain. An extrapolation of the curve to the limit 
(which is established via operational margins) yields the 
remaining life. In a backward mode, the extrapolated curve 
is discretized and estimated future flow and efficiency pairs 
are retrieved. These pairs are then input to the cycle deck to 
produce future anticipated sensor readings as well as 
confirmatory trips of operational margins. Changes of the 
future sensor readings with real readings are used to adjust 
the remaining life calculations.  The method is demonstrated 
on time series of historical engine faults.  

 

TABLE OF CONTENTS 

INTRODUCTION ................................................................... 1 
PROGNOSTICS...................................................................... 2 
DAMAGE MODELING........................................................... 3 
RESULTS .............................................................................. 5 
SUMMARY & CONCLUSIONS ............................................... 6 
REFERENCES ....................................................................... 7 
BIOGRAPHY ......................................................................... 7 
 

                                                           
  1-4244-0525-4/07/$20.00 ©2007 IEEE 
  IEEEAC paper #1032, Version 3, Updated December 26, 2006 
* Author conducted work while he was with GE Global Research 

INTRODUCTION 

At the heart of model-based prognostics is the ability to 
properly model the propagation of damage. To that end, 
considerable effort is currently being placed into 
understanding the mechanisms that influence the 
propagation at the materials level. This requires an in depth 
understanding of the local conditions the particular 
component is exposed to. For example, for spall 
propagation in bearings, it is required to have knowledge 
about the local load, speed, and temperature conditions at 
the site of the damage, e.g., at the outer race (or ball or 
cage). In addition, it is required to have knowledge about 
the geometry and local material properties at the suspected 
damage site. This information is then used to derive the 
stresses the component is expected to experience, typically 
using a finite element approach. The potential benefit of this 
– arguably somewhat tedious – process is the promise of 
accurate prediction of when the bearing will fail. For a 
different fault mode, the process has to be repeated. 
Because of the cost and effort involved, this method is 
reserved for a set of components that, if left undetected and 
without remaining life information, might experience 
catastrophic failure that transcends the entire system and 
causes system failure. However, there is a large set of 
components that will not benefit from this approach, either 
because the number of system failures caused for individual 
fault modes is low or because typically diagnostics can 
catch the fault before it causes system failure. In case of the 
small number of system failure per fault mode, the number 
of failures for the sum of all fault modes at a particular 
component might still be large. This might justify the need 
for prognostic techniques that   can employ techniques that 
are not as labor-intensive and cost-intensive, perhaps at the 
expense of some accuracy. A similar argument can be made 
for the case where diagnostics detects the fault but causes 
wasting in-service life, or worse, unscheduled maintenance, 
the latter typically causing significant interruption of 
service. 

It is therefore desirable to be able to increase coverage of 
prognostics for a range of fault mode. To that end, the 
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techniques would ideally utilize existing models and sensor 
data.  

As mentioned earlier, the key to prognostics is the ability to 
model the propagation of faults. Some information exists 
from diagnostics about how faults manifest themselves in 
sensor signatures. However, little is known  about how 
faults propagate and what effect this propagation has on the 
sensor signature. Similarly, little is known about how one 
would go about modeling the propagation of particular 
faults in existing tools such as a cycle deck. 

This paper addresses this issue by learning the signature of 
faults in the sensor data and mapping them back into 
parameters that can be changed in cycle decks. Initial results 
indicate that particular faults have preferred directions in the 
health related parameter space. By extrapolating the 
propagation in this parameter space and by mapping the 
extrapolation into the time domain, remaining life 
information can be derived. 

The following section briefly discusses prognostics, along 
by a review of health parameter modeling. This is followed 
by a description of how to accomplish prognostics in the 
health parameter space. A results section shows examples 
cases. The paper concludes with a discussion and remarks 
for future research.  

PROGNOSTICS  

Predicting life is not straightforward because, ordinarily, 
remaining life is conditional on future usage conditions such 
as load and speed, among others. Finding solutions to the 
prognostics problem is a very active research area. It has the 
promise of allowing users to avoid unscheduled 
maintenance and to increase equipment usage. In addition, it 
might potentially improve the safe operation of the 
equipment.  

Prognostics is closely linked with diagnostics. In the 
absence of any evidence of damage or faulted condition, 
prognostics reverts to statistical estimation of fleet-wide 
life. It is more common to employ prognostics in the 
presence of an indication of abnormal wear, faults, or other 
non-normal situation. It is therefore critical to provide 
accurate and quick diagnostics to allow prognostics to 
operate. 

Diagnostics 

As mentioned earlier, condition-based prognostics is reliant 
on diagnostics. It is assumed that the latter will provide a 
trigger point for the prognostic algorithms. That is, no 
prognostic estimates are calculated before diagnostics has 
detected a fault condition.  In the absence of abnormal 
conditions – or fault conditions – the best estimates for 

remaining component life are often fleet wide statistics 
expressed by Weibull curves or other suitable mechanism. 
Condition-based systems depend on reliable fault 
diagnostics to initiate the prognostic algorithms. If 
diagnostics recognizes the start point of damage too late, the 
damage propagation models will always lag reality and keep 
underestimating the damage. If prognostic algorithms are 
kicked off when there is no real damage, the benefit of true 
remaining life estimate is erased. It is therefore important to 
optimize the diagnostic capability to attain optimal 
prognostics. In this paper we will assume the presence of an 
accurate fault detection algorithm. 
 
Prognostics Definition 

Prognostics is here defined as the estimation of remaining 
useful component life. The remaining useful life (RUL) 
estimates are in units of time or cycles. The time estimate 
typically has associated uncertainty that is described as a 
probability density curve around the actual estimate. 
Operators can choose a confidence that allows them to 
incorporate a risk level into their decision making. 
Typically, the confidence level on RUL estimates increases 
as the prediction horizon decreases.   
 
Remaining life estimates provide indispensable information 
for operation of modern complex equipment. They provide 
decision making aids that allow operators to change 
operational characteristics (such as load) which in turn may 
prolong the life of the component. It also allows planners to 
account for upcoming maintenance and set in motion a 
logistics process that supports a smooth transition from 
faulted equipment to fully functioning. Examples of these 
types of equipment are aircraft engines (both military and 
commercial), medical equipment, power plants, etc.  

A common approach to prognostics is to employ a model of 
damage propagation contingent on future use. Such a model 
is often times based on detailed materials knowledge and 
makes use of finite element modeling. Another approach is 
to take advantage of time series data where equipment 
behavior has been tracked via sensor measurements during 
the normal operation all the way to equipment failure. When 
a reasonably-sized set of these observations exists, pattern 
recognition algorithms can be employed to recognize these 
trends and predict remaining life (albeit, often times under 
the assumption of near-constant future load conditions). 
However, often times, run-to failure data are not available 
because, when the observed system is complex and 
expensive and safety is critical (e.g., in aircraft engines), 
faults are repaired before they lead to system failure. This 
deprives the data driven approach of critical information. 
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DAMAGE MODELING 

Tracking and predicting the progression of damage in a 
turbo machinery has some roots in the work of Kurosaki et 
al. (Kurosaki et al., 2004). They identify the efficiency and 
the flow rate deviation of the compressor and the turbine 
based on operational data for fault detection. Chatterjee and 
Litt (Chatterjee and Litt, 2003) investigate engine 
degradation by exploring flow and efficiencies. 
 
Our proposed process is broken down into an off-line 
training process and an on-line monitoring process.  
 
Off-line process 

During the off-line process, the sensor response surfaces are 
acquired from the cycle deck as a function of flow and 
efficiency for specific modules (see Figure 1).  Specifically, 
for each module in the gas path (HPC, HPT, and LPT), the 
efficiencies and flows are incrementally changed and the 
cycle deck is then run under reference cruise conditions. 
Some resulting HPC module response surfaces for the core 
speed sensor (N2), the exhaust gas temperature (EGT), the 
compressor inlet pressure (ps3), and the compressor inlet 
temperature (T3) are shown in Figure 1 –Figure 4, 
respectively. The range of the flow and efficiency is the 
same in all figures. Response surfaces for the other modules 
are generated by the same process. 

 
Figure 1: Response surface of N2 

 

 
Figure 2: Response surface of EGT 

 

 
Figure 3: Response surface of ps3 

 
Figure 4: Response surface of T3 

 
The response surfaces for all gas path modules are then 
overlaid and normalized for use with the online process. 
There, a plurality of sensor measurements is fitted to the 
response such that a best match is established. The 
corresponding flow f and efficiency η pair is assumed to be 
the parameter set for this flight. 
 
Online Process 

The online process can be divided in several steps: 
1.) Based on the information from diagnostic module, 

a set of response surfaces associated with the faulty 
component is selected. Sensor measurements are 
normalized and their best match with the existing 
surfaces is determined. This can be phrased as an 
optimization problem where the objective function 
is written as, 

( )( ) { }36332
2

i ,,,,Ni ,wmin wfEGTTpsdisti ∈∑  

where the disti are the distances from the specific 
measurements to the respective response surface. 
This step is illustrated in Figure 5 where a vector 
of measurements is fitted to the respective response 
surfaces. After sensor measurements collected at 
different flight cycles have found their 
corresponding best matching pairings on the same 
η− f space, a η− f trajectory can be generated by 
connecting all those best matches. 
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Figure 5: Process of finding best match 

between sensor vector and response surfaces 
 

2.) Next, the best matching pairing η, f is compared 
with previous η, f pairings. In the presence of a 
fault and depending on the fault mode, the 
direction of the trajectory in the η, f space is 
determined. This is a key insight because different 
fault modes may be manifested by different 
progressions in this space. An example for the 
directional information is shown in Figure 13 that 
shows the fault of a static structure in the gas path.  

3.) As a next step, the rate of change in the η, f space 
is observed and recorded for the trajectory.  
A critical aspect of prognostics is the ability to 
establish operability limits. This is a threshold 
beyond which the equipment cannot be operated. 
Often times, this is the point where failure is 
assumed to occur (or failure will occur for some 
proportion of equipment given a particular risk 
level). Failure can be expressed in many different 
ways. For the purpose of this study, we consider 
zero operational margin (such as stall margin) as 
the failure threshold. 

4.) Among the margins considered, some are directly 
measurable, such as core speed limits and upper 
EGT thresholds. Others are “virtual” margins 
established through simulation in the cycle deck.  
A normalized margin is used to quantify the health 
of engine modules. The underlying premise is that 
if one engine with certain η and f pairing violates 
either one of operational margins under any 
possible operational conditions, such as hot day 
take off, maximum climb, or cruise, its health 

index would be zero. Otherwise, whichever 
minimal margin would be its current health index. 
Figure 7 shows a normalized minimal margin 
surface of the HPC under faulty condition. The 
pink contour line presents the boundary of zero 
margin, which means any η and f pairings beyond 
that line would have a minimal margin less than 
zero, i.e., the health index is zero. 

 
Figure 7 - Minimal margin surface of HPC 

fault 
The trajectory is then projected into the time domain 
(Figure 8).  

 
Figure 8 – Trajectory projected into time 

domain 
 

5.) A suitable function is used for regression and 
extrapolation of the curve to known health limits.  
Figure 9 illustrates that concept where the circles 
represent observed data, the dashed line is 
extrapolated. The intersect of the extrapolated line 
with zero health gives the remaining life. Usually, 
the prognostics process stops with this step 

 

 
Figure 6 Steps for off-line process 
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Figure 9: Extrapolation of projected health 
parameters. 

 
However, there is additional information that can 
be gleaned from the calculated value. 

6.) Specifically, in a backward chaining move, the 
extrapolated η, f pairings are discretized. Next, 
thay can be used as input to the cycle deck. The 
resulting expected sensor outputs are compared 
with the real sensor output to assess prediction 
accuracy. The remaining life estimates are further 
confirmed with operational events in this forward 
mode. In addition, a distribution of η, f readings 
can be input to the cycle deck, which will produce 
operational events at different times. This 
distribution of module failure times can be used as 
an uncertainty estimation tool. 

 
Figure 12 gives an overview of the online process. 

RESULTS 

The process described has been employed on real engine 
data from a high bypass commercial jet engine. The 
resulting trajectory for a static gas path structure fault can 
be seen in Figure 10. The start point is the point when a 
diagnostic tool has indicated the presence of a fault (the 
presence of a high fidelity diagnostic tool is assumed for the 
purpose of this study). The end points reflect when 
maintenance was performed. Prior to fault initiation, the 
movements in the η, f-space were very inert (with some 
random changes of small magnitude), essentially milling 
around a stagnant operating point, only moving slightly 
with normal wear over thousands of cycles. Soon after the 
fault starts, the engine exhibits distinct changes in the η, f 
space. The resulting trajectory has been smoothed to 
accentuate the directional properties.   

 

Figure 10: Directional information in η, f space 
for fault of static structure in gas path 

 
Although the diagnostic tool is assumed to give accurate 
information about which module exhibits the fault, it is 
possible to confirm that information with the process 
described herein. Specifically, one can compute a residual 
error of fit for the surface mapping tasks (step 1 of the 
online process). Figure 11 shows the residual of surface fits 
applied to the different module HPT and LPT. In this case, 
the problem was a LPT problem, which is confirmed by the 
lower LPT surface fit residual.  

 

Figure 11 – Residual of surface fit for different 
modules 

Figure 13 illustrates nicely that the directional properties of 
the trajectories in the η, f space are retained for different 
engines with the same fault mode. Only the starting point 
and ending points are dissimilar. The starting points are 
determined by engine-to-engine variation and priori 
deterioration of the engine.  
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Figure 12: On-line Process 

 
Figure 13 – Trajectories for similar faults in 

different engines 
 
While this was not the primary objective of this project, it is 
interesting to note that other fault modes may be represented 
by different trajectories in the η, f space, which reveal 
different processes of damage propagation. Figure 14 gives 
an example for a different fault mode where the 
predominant effect is an increase in flow capacity with 
comparatively little loss in efficiency.  

 
Figure 14 – Trajectory for different fault 

SUMMARY & CONCLUSIONS 

This paper describes how one can use cycle deck models in 
conjunction with real engine data to estimate damage 
propagation for the purpose of estimating remaining life of 
a component or a subsystem. This approach trades off 
accuracy with coverage: instead of describing the damage 
propagation at the materials level, it addresses it at the 
module level. In other words, it does not attempt to model a 
subset of faults with a physics of failure approach. Instead, 
it observes the effect of the damage propagation and 
extrapolates the damage to an operational limit. To that end, 
the response surfaces of all sensors are generated first as a 
function of variations of flow and efficiency of the modules. 
These surfaces are normalized and superimposed. Next, the 
sensor readings are matched to that surface and – using an 
optimization approach, the corresponding flow and 
efficiency pair is found that best explains the sensor data. 
Next, the flow and efficiency pair is mapped into a safety 
margin space which all kind of flight conditions are 
considered.  The margin trajectory is then compared to 
previous cycle and the direction of the change as well as the 
rate of change is determined. Finally, the whole trajectory is 
projected into the time domain. An extrapolation of the 
curve to the limit (which is established via operational 
margins) yields the remaining life. In a backward mode, the 
extrapolated curve is discretized, and flow and estimated 
future efficiency pairs are retrieved. These pairs are then 
input to the cycle deck to produce future anticipated sensor 
readings as well as confirmatory trips of operational 
margins. Changes of the future sensor readings with real 
readings are used to adjust the remaining life calculations.  
In addition, the variation of the flow and efficiencies 
quantifies the uncertainty of the remaining life output. 
 
Future work will tackle the validation of this approach 
which is an issue in general for prognostics but even more 
so here where failure data are missing. In addition, 
uncertainty management needs to be addressed in a more 
rigorous manner. 
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